Как изменяется внутренняя энергия о температуры. Внутренняя энергия тела Почему внутренняя энергия зависит от массы тела

Вы видите взлетающую ракету. Она совершает работу – поднимает космонавтов и груз. Кинетическая энергия ракеты возрастает, так как по мере подъёма ракета приобретает всё большую скорость. Потенциальная энергия ракеты также возрастает, так как она всё выше поднимается над Землёй. Следовательно, сумма этих энергий, то есть механическая энергия ракеты, тоже увеличивается.

Мы помним, что при совершении телом работы его энергия уменьшается. Однако ракета совершает работу, но её энергия не уменьшается, а увеличивается! В чём же разгадка противоречия? Оказывается, что кроме механической энергии существует ещё один вид энергии – внутренняя энергия. Именно за счёт уменьшения внутренней энергии сгорающего топлива ракета совершает механическую работу и, кроме того, увеличивает свою механическую энергию.

Не только горючие , но и горячие тела обладают внутренней энергией, которую легко превратить в механическую работу. Проделаем опыт. Нагреем в кипятке гирю и поставим на жестяную коробочку, присоединённую к манометру. По мере того как воздух в коробочке будет прогреваться, жидкость в манометре начнёт двигаться (см. рисунок).

Расширяющийся воздух совершает над жидкостью работу. За счёт какой энергии это происходит? Разумеется, за счёт внутренней энергии гири. Следовательно, в этом опыте мы наблюдаем превращение внутренней энергии тела в механическую работу. Заметим, что механическая энергия гири в этом опыте не меняется – она всё время равна нулю.

Итак, внутренняя энергия – это такая энергия тела, за счёт которой может совершаться механическая работа, при этом не вызывая убыли механической энергии этого тела.

Внутренняя энергия любого тела зависит от множества причин: рода и состояния его вещества, массы и температуры тела и других. Внутренней энергией обладают все тела: большие и маленькие, горячие и холодные, твёрдые, жидкие и газообразные.

Наиболее легко на нужды человека может быть использована внутренняя энергия лишь, образно говоря, горячих и горючих веществ и тел. Это нефть, газ, уголь, геотермальные источники вблизи вулканов и так далее. Кроме того, в XX веке человек научился использовать и внутреннюю энергию так называемых радиоактивных веществ. Это, например, уран, плутоний и другие.

Взгляните на правую часть схемы. В популярной литературе нередко упоминаются тепловая, химическая, электрическая, атомная (ядерная) и другие виды энергии. Все они, как правило, являются разновидностями внутренней энергии, так как за счёт них может совершаться механическая работа, не вызывая при этом убыли механической энергии. Понятие внутренней энергии мы рассмотрим более подробно при дальнейшем изучении физики.

Внутренняя энергия

С позиций молекулярно-кинетической теория внутренняя энергия (Дж) - это сумма потенциальной энергии взаимодействия частиц, составляющих тело, и кинетической энергии их беспорядочного теплового движения. Кинетическая энергий беспорядочного движения частиц пропорциональна температуре Т, потенциальная энергия взаимодействия зависит от расстояний между частицами, т.е. от объема V тела. Поэтому в термодинамике внутренняя энергия U тела определяется как функция температуры Т и объела V.

При любых процессах в изолированной термодинамической системе внутренняя энергия остается неизменной: или.

Внутренняя энергия определяется термодинамическим состоянием системы и не зависит от того, каким образом система оказалась в данном состоянии. Следовательно, внутренняя энергия не связана с процессом изменений состояния системы. В двух или нескольких одинаковых состояниях системы ее внутренняя энергия одна и та же.

Практический интерес представляет не сама внутренняя энергия, а ее изменение при переходе системы из одного состояния в другое. Если потенциальная энергия взаимодействия молекул равна нулю, внутренняя энергия идеального газа равна сумме кинетических энергий движения всех его молекул. Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре. Следовательно, при изменении температуры идеального газа обязательно изменяется его внутренняя энергия.

где R - универсальная газовая постоянная, М - молярная масса, Т - абсолютная температура, т - масса, - число молекул.

Зависимость внутренней энергии от макроскопических параметров

Внутренняя энергия идеального газа зависит от одного параметра - температуры. От объема внутренняя энергия идеального газа не зависит потому, что потенциальная энергия взаимодействия его молекул считается равной нулю.

У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул не равна нулю. Средняя потенциальная энергия взаимодействия молекул зависит от объема вещества, так как при изменении объема меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия, в термодинамике в общем случае наряду с температурой Т зависит и от объема V.

Внутренняя энергия U макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объемом.

Работа в термодинамике

Внутреннюю энергию можно изменит двумя способами: совершением работы, когда внутренняя энергия изменяется на величину, равную работе внешних сил А, и теплопередачей, при которой изменение внутренней энергии характеризуется количеством теплоты Q.

При совершении работы меняется объем тела, а его скорость остается равной нулю. Но скорости молекул тела, например газа, меняются. Поэтому меняется и температура тела.

Итак, при совершении работы в термодинамике меняется состояние макроскопических тел: меняется их объем и температура.

Вычисление работы:

F" - сила, с которой газ давит на поршень;

F - сила, с которой поршень давит на газ;

A" - работа, совершаемая газом над внешними телами;

A - работа, совершаемая внешними телами над газом.

1. газ расширяется

где - изменение объема.

Газ предает энергию окружающим телам и охлаждается.

2. газ сжимается

Газ получает энергию от внешних тел и нагревается. Знак минус указывает, что при сжатии газа, когда, работа внешней силы положительна.

Любое макроскопическое тело имеет энер-гию , обусловленную его микросостоянием. Эта энергия называется внутренней (обо-значается U ). Она равняется энергии дви-жения и взаимодействия микрочастиц, из которых состоит тело. Так, внутренняя энер-гия идеального газа состоит из кинетической энергии всех его молекул, поскольку их вза-имодействием в данном случае можно пре-небречь. Поэтому его внутренняя энергия за-висит лишь от температуры газа (U ~ T ).

Модель идеального газа пре-дусматривает, что молекулы на-ходятся на расстоянии несколь-ких диаметров друг от друга. Поэтому энергия их взаимо-действия намного меньше энер-гии движения и ее можно не учитывать.

У реальных газов, жидкостей и твердых тел взаимодействием микрочастиц (атомов, молекул, ионов и т. п.) пренебречь нельзя, поскольку оно существенно влияет на их свойства. Поэтому их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия. Их внутренняя энергия, кроме температуры T, будет за-висеть также от объема V, поскольку изме-нение объема влияет на расстояние между атомами и молекулами, а, следовательно, и на потенциальную энергию их взаимодей-ствия между собой.

Внутренняя энергия — это функция состояния тела, которая опреде-ляется его температурой T и объемом V.

Внутренняя энергия однознач-но определяется температурой T и объемом тела V, характе-ризующими его состояние: U = U(T, V)

Чтобы изменить внутреннюю энергию те-ла, нужно фактически изменить или кинетическую энергию теплового движения мик-рочастиц, или потенциальную энергию их взаимодействия (или и ту и другую вместе). Как известно, это можно сделать двумя способами — путем теплообмена или вслед-ствие выполнения работы. В первом случае это происходит за счет передачи опреде-ленного количества теплоты Q; во втором — вследствие выполнения работы A.

Таким образом, количество теплоты и выполненная работа являются мерой изме-нения внутренней энергии тела :

Δ U = Q + A.

Изменение внутренней энер-гии происходит за счет отдан-ного или полученного телом не-которого количества теплоты или вследствие выполнения ра-боты.

Если имеет место лишь теплообмен, то изменение внутренней энергии происходит путем получения или отдачи определенного количества теплоты: Δ U = Q. При нагрева-нии или охлаждении тела оно равно:

Δ U = Q = cm(T 2 — Т 1) = cm ΔT.

При плавлении или кристаллизации твер-дых тел внутренняя энергия изменяется за счет изменения потенциальной энергии вза-имодействия микрочастиц, ведь происходят структурные изменения строения вещества. В данном случае изменение внутренней энер-гии равняется теплоте плавления (кристал-лизации) тела: ΔU — Q пл = λ m, где λ — удель-ная теплота плавления (кристаллизации) твер-дого тела.

Испарение жидкостей или конденсация пара также вызывает изменение внутренней энергии , которая равна теплоте парообра-зования: Δ U = Q п = rm, где r — удельная теп-лота парообразования (конденсации) жидко-сти.

Изменение внутренней энергии тела вслед-ствие выполнения механической работы (без теплообмена) численно равно значению этой работы: Δ U = A.

Если изменение внутренней энергии происходит вследст-вие теплообмена, то Δ U = Q = cm(T 2 — T 1), или Δ U = Q пл = λ m, или Δ U = Q п = rm.

Следовательно, с точки зрения моле-кулярной физики: Материал с сайта

Внутренняя энергия тела является суммой кинетической энергии теп-лового движения атомов, молекул или других частиц, из которых оно состоит, и потен-циальной энергии взаимодействия между ни-ми; с термодинамической точки зрения она является функцией состояния тела (системы тел), которая однозначно определяется его макропараметрами — температурой T и объе-мом V.

Таким образом, внутренняя энергия — это энергия системы, которая зависит от ее внутреннего состояния. Она состоит из энергии теплового движения всех микро-частиц системы (молекул, атомов, ионов, электронов и т. п.) и энергии их взаи-модействия. Полное значение внутренней энергии определить практически невоз-можно, поэтому вычисляют изменение внут-ренней энергии Δ U, которое происходит вследствие теплопередачи и выполнения ра-боты.

Внутренняя энергия тела равна сумме кинетической энергии теплового движения и потен-циальной энергии взаимодей-ствия составляющих его мик-рочастиц.

На этой странице материал по темам:

  • Молекулярно-кинетическое толкование внутренней энергии системы

  • Краткое сообщение "об использования внутренней энергии тела"

  • От чего зависит внутренняя энергия твердого тела

  • Способ изменения внутренней энергии тела краткий конспект

  • Все окружающие нас макроскопические тела в своем составе имеют частицы: атомы или молекулы. Находясь в постоянном движении, они одновременно обладают двумя видами энергии: кинетической и потенциальной и формируют внутреннюю энергию тела:

    U = ∑ Е k +∑ Е p

    В это понятие входит также энергия взаимодействия друг с другом электронов, протонов, нейтронов.

    Возможно ли изменение внутренней энергии

    Существует 3 способа ее изменения:

    • благодаря процессу теплопередачи;
    • путем совершения механической работы;
    • с помощью проведения химических реакций.

    Рассмотрим более подробно все варианты.

    Если работу будет совершать само тело, то его внутренняя энергия станет уменьшаться, а когда работу совершают над телом, внутренняя его энергия будет увеличиваться.

    Простейшими примерами увеличения энергии являются случаи добывания огня с помощью трения:

    • с применением трута;
    • с помощью огнива;
    • с использованием спичек.

    Тепловые процессы, связанные с изменениями температуры, также сопровождаются изменениями внутренней энергии. Если нагревать тело, его энергия будет возрастать.

    Результатом химических реакций является превращение веществ, которые отличны друг от друга строением и составом. Например, в процессе горения топлива после соединения водорода с кислородом образуется оксид углерода. При соединении соляной кислоты с цинком выделится водород, а в результате горения водорода выделится водяной пар.

    Внутренняя энергия тела будет меняться и из-за перехода электронов с одной электронной оболочки на другую.

    Энергия тел — зависимость и характеристики

    Внутренняя энергия является характеристикой теплового состояния тела. Она зависит от:

    • агрегатного состояния, и меняется при кипении и испарении, кристаллизации или конденсации, плавлении или сублимации;
    • массы тела;
    • температуры тела, характеризующей кинетическую энергию частиц;
    • рода вещества.

    Внутренняя энергия одноатомного идеального газа

    Эта энергия, в идеале, складывается из кинетических энергий каждой частицы, которая беспорядочно и непрерывно движется, и потенциальной энергии их взаимодействия в рамках конкретного тела. Происходит это благодаря изменению температуры, что подтверждают проведенные эксперименты Джоуля.

    Для расчета внутренней энергии одноатомного газа пользуются уравнением:

    Где в зависимости от изменения температуры будет меняться внутренняя энергия (возрастать с увеличением температуры, и уменьшаться с ее убыванием). Внутренняя энергия – это функция состояния.

    Внутренняя энергия — важнейшее условие существования и характеристика всех тел живой и неживой природы. Для того чтобы определить её значение в организации жиз-ни на нашей планете, вспомним основные физические понятия термо-динамики .

    Макроскопические тела состоят из движущихся и взаимодействую-щих частиц: молекул , атомов , ионов . В свою очередь, атомы и ядра атомов тоже состоят из движущихся и взаимодействующих частиц.

    Как известно, движущиеся тела обладают кинетической энер-гией, следовательно, частицы (молекулы, атомы, ионы), из которых состоит вещество, тоже обладают кинетической энергией.

    Взаимодействующие тела обладают энергией взаимодействия, или потенциальной энергией. Поскольку частицы вещества взаимодей-ствуют между собой, то они обладают потенциальной энергией.

    Следовательно, частицы, из которых состоят макроскопические тела, обладают кинетической и потенциальной энергией, их сумма и есть внутренняя энергия макроскопической системы.

    Внутренней энергией (U ) макроскопической системы называют сумму кинетической энергии (E К) движения составляющих его ча-стиц (молекул, атомов, ионов) и потенциальной энергии (E П) их вза-имодействия: U = E K + E П.

    Единицей измерения внутренней энергии является джоуль (1 Дж).

    К внутренней энергии относят и энергию движения и взаимодей-ствия частиц, входящих в состав атомов и ядер вещества, однако в мо-лекулярной физике имеют дело с процессами, которые происходят при не слишком высоких температурах и не связаны с превращением вещества. В этих процессах внутриатомная и внутриядерная энергия не изменяется.

    Внутренняя энергия, так же как температура , давление и объём (термодинамические параметры ), характеризует состояние системы. При изменении состояния тела изменяется и значение внутренней энергии .

    Как известно, кинетическая энергия тела прямо пропорцио-нальна квадрату его скорости. Поскольку молекулы имеют разные скорости и, следовательно, разные кинетические энергии, то их сово-купность характеризуется средней кинетической энергией, которая прямо пропорциональна среднему квадрату скорости движения моле-кул:

    Ėk = m 0 v̇ 2 / 2. Материал с сайта

    Так как температура тела прямо пропорциональна средней кинети-ческой энергии составляющих его частиц, то внутренняя энергия тела зависит от его температуры и об изменении внутренней энергии мож-но судить по изменению температуры тела.

    Внутренняя энергия тела зависит и от его агрегатного состояния. Так, она больше у стоградусного пара, чем у воды такой же массы при той же температуре. Это объясняется различием потенциальных энер-гий взаимодействия молекул пара и воды.

    Внутренняя энергия зависит и от деформации тела: она больше у де-формированного тела, чем у недеформированного.

    Следует иметь в виду, что внутренняя энергия тела не зависит от его движения как целого и от его положения в пространстве. Так, значения внутренней энергии у шарика, лежащего на полу и подня-того на некоторую высоту, одинаковы при одинаковых прочих усло-виях.

    Вопросы по этому материалу:

Поделиться: